Site Specific Synthesis and Polymerase Bypass of Oligonucleotides Containing a 6-Hydroxy-3,5,6,7-tetrahydro-9H-imidazo[1,2-a]purin-9-one Base, an Intermediate in the Formation of 1,N2-Etheno-2‘-deoxyguanosine
- 21 October 2005
- journal article
- research article
- Published by American Chemical Society (ACS) in Chemical Research in Toxicology
- Vol. 18 (11) , 1701-1714
- https://doi.org/10.1021/tx050141k
Abstract
The reaction of DNA with certain bis-electrophiles such as chlorooxirane and chloroacetaldehyde produces etheno adducts. These lesions are highly miscoding, and some of the chemical agents that produce them have been shown to be carcinogenic in laboratory animals and in humans. An intermediate in the formation of 1,N2-ethenoguanine is 6-hydroxy-3,5,6,7-tetrahydro-9H-imidazo[1,2-a]purin-9-one (6-hydroxyethanoguanine), which undergoes conversion to the etheno adduct. The chemical properties and miscoding potential of the hydroxyethano adduct have not been previously studied. A synthesis of the hydroxyethano-adducted nucleoside was developed, and it was site specifically incorporated into oligonucleotides. This adduct had a half-life of between 24 and 48 h at neutral pH and 25 °C at the nucleoside and oligonucleotide levels. The miscoding potential of the hydroxyethano adduct was examined by primer extension reactions with the DNA polymerases Dpo4 and pol T7-, and the results were compared to the corresponding etheno-adducted oligonucleotide. Dpo4 preferentially incorporated dATP opposite the hydroxyethano adduct and dGTP opposite the etheno adduct; pol T7- preferentially incorporated dATP opposite the etheno adduct while dGTP and dATP were incorporated opposite the hydroxyethano adduct with nearly equal catalytic efficiencies. Collectively, these results indicate that the hydroxyethano adduct has a sufficient lifetime and miscoding properties to contribute to the mutagenic spectrum of chlorooxirane and related genotoxic species.Keywords
This publication has 60 references indexed in Scilit:
- Structural Characterization of an Etheno-2‘-deoxyguanosine Adduct Modified by TetrahydrofuranChemical Research in Toxicology, 2005
- Induction of 1,N2‐etheno‐2′‐deoxyguanosine in DNA exposed to β‐carotene oxidation productsFEBS Letters, 2004
- A Novel Synthesis of Malondialdehyde Adducts of Deoxyguanosine, Deoxyadenosine, and DeoxycytidineChemical Research in Toxicology, 2004
- DNA Interchain Cross-Links Formed by Acrolein and CrotonaldehydeJournal of the American Chemical Society, 2002
- Regioisomeric Synthesis and Characteristics of the α-Hydroxy-1,N2-propanodeoxyguanosineChemical Research in Toxicology, 2002
- NMR Characterization of a DNA Duplex Containing the Major Acrolein-derived Deoxyguanosine Adduct γ-OH-1,-N 2-Propano-2′-deoxyguanosineJournal of Biological Chemistry, 2001
- Postsynthetic Generation of a Major Acrolein Adduct of 2‘-Deoxyguanosine in Oligomeric DNA†Journal of Medicinal Chemistry, 1999
- 1,N6-Ethenodeoxyadenosine, a DNA Adduct Highly Mutagenic in Mammalian CellsBiochemistry, 1996
- Mutagenic and genotoxic effects of three vinyl chloride-induced DNA lesions: 1,N6-ethenoadenine, 3,N4-ethenocytosine, and 4-amino-5-(imidazol-2-yl)imidazoleBiochemistry, 1993
- Chloroacetaldehyde-treated ribo- and deoxyribopolynucleotides. 1. Reaction productsBiochemistry, 1982