Retinotopic organization of central optic projections in Rana pipiens

Abstract
The retinotopic organization of the anuran visual system has been investigated with the method of selective anterograde transport of horseradish peroxidase (HRP) following retinal lesions. The course of optic axons to specific structures was also confirmed by retrograde transport in the optic tract following HRP injections in the tectum and pretectum. As the optic nerve reaches the optic chiasm, the fibers from each of the four retinal quadrants appear as bands with the nasal (n) quadrant entering the chiasmal anterior pole, followed by ventral (v), temporal (t), and dorsal (d) quadrants. The preoptic nucleus is the first structure to be innervated, followed by the suprachiasmatic nucleus; both are innervated directly from fibers in the dorsal part of the optic nerve, which contains fibers from all the retinal quadrants. Each quadrant expands across the dorsoventral extent of the chiasm at the point where it enters. At this level the quadrants are arrayed along the rostrocaudal axis (as they are later in the marginal optic tract) in the sequence n‐v‐t‐d. Optic fibers then spread across the chiasm, the nasal quadrant splits, taking up positions in the rostral and caudal margins of the optic radiation. Following the split in the nasal representation, the optic tract is transformed into topographically arranged sheets in the marginal optic tract. In the other retinorecipient nuclei, the sheet of optic axons is transformed back into the shape of the retinal hemisphere. Topographic maps of this kind display one of two possible orientations: (1) in the tectum and the nucleus lentiformis mesencephali (nLM), the temporal retina is represented in the anterior portion of the nucleus, whereas the nasal quadrant is found in the posterior portion; (2) in the thalamus, the retinotopic map is organized as a mirror‐image reversal of that seen in the tectum and nLM (i.e., the nasal pole is anterior, whereas the temporal pole is in the posterior portion of the nucleus). Structures with this type of retinal map include the rostral visual nucleus, the corpus geniculatum, the nucleus of Bellonci, and the posterior thalamic nucleus. A third type of innervation occurs in the nucleus of the basal optic root (nBOR), which is the only mesencephalic visual nucleus not innervated by the marginal optic tract. The basal optic root is formed by the fibers exiting most caudally from the optic chiasm. All the retinal quadrants contribute to the basal optic root, but no evidence of retinotopy was found in nBOR. Following HRP injections in the pretectum, the majority of retrogradely labelled fibers were found in the medial portions of the marginal optic tract and chiasm. Tectal injections labelled fibers primarily in the lateral portions of the marginal optic tract and chiasm. It is proposed that this difference is related to the sequential, ontogenetic development of the retina and its central target nuclei.