Abstract
Lagrangian and Hamiltonian mechanics can be formulated to include derivatives of fractional order [F. Riewe, Phys. Rev. 53, 1890 (1996)]. Lagrangians with fractional derivatives lead directly to equations of motion with nonconservative classical forces such as friction. The present work continues the development of fractional-derivative mechanics by deriving a modified Hamilton's principle, introducing two types of canonical transformations, and deriving the Hamilton-Jacobi equation using generalized mechanics with fractional and higher-order derivatives. The method is illustrated with a frictional force proportional to velocity. In contrast to conventional mechanics with integer-order derivatives, quantization of a fractional-derivative Hamiltonian cannot generally be achieved by the traditional replacement of momenta with coordinate derivatives. Instead, a quantum-mechanical wave equation is proposed that follows from the Hamilton-Jacobi equation by application of the correspondence principle.