Mechanisms of Central Nervous System Viral Persistence: the Critical Role of Antibody and B Cells

Abstract
Contributions of humoral and cellular immunity in controlling neurotropic mouse hepatitis virus persistence within the CNS were determined in B cell-deficient JHD and syngeneic H-2d B cell+ Ab-deficient mice. Virus clearance followed similar kinetics in all mice, confirming initial control of virus replication by cellular immunity. Nevertheless, virus reemerged within the CNS of all Ab-deficient mice. In contrast to diminished T cell responses in H-2b B cell-deficient μMT mice, the absence of B cells or Ab in the H-2d mice did not compromise expansion, recruitment into the CNS, or function of virus-specific CD4+ and CD8+ T cells. The lack of B cells and lymphoid architecture thus appears to manifest itself on T cell responses in a genetically biased manner. Increasing viral load did not enhance frequencies or effector function of virus-specific T cells within the CNS, indicating down-regulation of T cell responses. Although an Ab-independent antiviral function of B cells was not evident during acute infection, the presence of B cells altered CNS cellular tropism during viral recrudescence. Reemerging virus localized almost exclusively to oligodendroglia in B cell+ Ab-deficient mice, whereas it also replicated in astrocytes in B cell-deficient mice. Altered tropism coincided with distinct regulation of CNS virus-specific CD4+ T cells. These data conclusively demonstrate that the Ab component of humoral immunity is critical in preventing virus reactivation within CNS glial cells. B cells themselves may also play a subtle role in modulating pathogenesis by influencing tropism.