Properties of a Tn5 insertion mutant defective in the structural gene (fruA) of the fructose-specific phosphotransferase system of Rhodobacter capsulatus and cloning of the fru regulon
Open Access
- 31 March 1988
- journal article
- research article
- Published by American Society for Microbiology in Journal of Bacteriology
- Vol. 170 (4) , 1698-1703
- https://doi.org/10.1128/jb.170.4.1698-1703.1988
Abstract
In photosynthetic bacteria such as members of the genera Rhodospirillum, Rhodopseudomonas, and Rhodobacter a single sugar, fructose, is transported by the phosphotransferase system-catalyzed group translocation mechanism. Previous studies indicated that syntheses of the three fructose catabolic enzymes, the integral membrane enzyme II, the peripheral membrane enzyme I, and the soluble fructose-1-phosphate kinase, are coordinately induced. To characterize the genetic apparatus encoding these enzymes, a Tn5 insertion mutation specifically resulting in a fructose-negative, glucose-positive phenotype was isolated in Rhodobacter capsulatus. The mutant was totally lacking in fructose fermentation, fructose uptake in vivo, phosphoenolpyruvate-dependent fructose phosphorylation in vitro, and fructose 1-phosphate-dependent fructose transphosphorylation in vitro. Extraction of the membrane fraction of wild-type cells with butanol and urea resulted in the preparation of active enzyme II free of contaminating enzyme I activity. This preparation was used to show that the activity of enzyme I was entirely membrane associated in the parent but largely soluble in the mutant, suggesting the presence of an enzyme I-enzyme II complex in the membranes of wild-type cells. The uninduced mutant exhibited measurable activities of both enzyme I and fructose-1-phosphate kinase, which were increased threefold when it was grown in the presence of fructose. Both activities were about 100-fold inducible in the parental strain. Although the Tn5 insertion mutation was polar on enzyme I expression, fructose-1-phosphate kinase activity was enhanced, relative to the parental strain. ATP-dependent fructokinase activity was low, but twofold inducible and comparable in the two strains. A second fru::Tn5 mutant and a chemically induced mutant selected on the basis of xylitol resistance showed pleiotropic loss of enzyme I, enzyme II, and fructose-1-phosphate kinase. These mutants were used to clone the fru regulon by complementing the negative phenotype with a wild-type cosmid bank.This publication has 30 references indexed in Scilit:
- Sugar transport. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system.Published by Elsevier ,2021
- Cloning of DNA fragments carrying hydrogenase genes of Rhodopseudomonas capsulataBiochimie, 1986
- Phosphoenolpyruvate:carbohydrate phosphotransferase system of bacteria.1985
- The phosphoenolpyruvate‐dependent fructose‐specific phosphotransferase system in Rhodopseudomonas sphaeroidesEuropean Journal of Biochemistry, 1985
- Mechanisms of Carbohydrate TransportPublished by Elsevier ,1985
- Evidence for the evolutionary relatedness of the proteins of the bacterial phosphoenolpyruvate:Sugar phosphotransferase systemJournal of Cellular Biochemistry, 1985
- Vector Plasmids for in-Vivo and in-Vitro Manipulations of Gram-Negative BacteriaPublished by Springer Nature ,1983
- Phosphoenolpyruvate-dependent fructose phosphotransferase system of Rhodopseudomonas sphaeroides: purification and physicochemical and immunochemical characterization of a membrane-associated enzyme IBiochemistry, 1982
- Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti.Proceedings of the National Academy of Sciences, 1980
- A rapid alkaline extraction procedure for screening recombinant plasmid DNANucleic Acids Research, 1979