Structural basis of protein kinase C activation by diacylglycerols and tumor promoters

Abstract
Protein kinase C is a ubiquitous and important regulatory enzyme. The enzyme is physiologically activated in a temporary manner by (S)-diacylglycerols (DAGs), which are themselves generated by the phospholipase C mediated hydrolysis of polyphosphoinositides. The (S)-DAGs specifically bind to the regulatory domain of PKC and cause the activation of the PKC toward substrate. Minor modifications in the DAG result in inactive molecules. On the other hand, the structurally diverse, polycyclic tumor promoters also specifically activate PKC by binding to the same effector site as do the DAGs. The object of this paper is to present a discrete structural model that accounts for the activation of PKC by both the tumor promoters and the DAGs. The unique model presented is based on experimentation rather than on computer-driven hypotheses which, experience has shown, generally produce incorrect structural models when applied to PKC. The model described here begins with a structural analysis of the tumor-promoting debromoaplysiatoxins (DATs). DAT is an ideal starting molecule, because it is conformationally rigid with a known relative and absolute configuration, and it is synthetically manipulable. The pharmacophore of DAT was experimentally determined, and this pharmacophore serves as a template for further analyses. This template is used to predict the active conformer of the acylic DAGs; this conformer is then used to reveal the pharmacophore of various families of tumor promoters. The overall model presented is consistent with published structure-activity studies on the tumor promoters and makes testable predictions that have proven to be correct thus far.

This publication has 0 references indexed in Scilit: