Abstract
Let G be a connected Lie group and H a closed subgroup with Lie algebra such that in the Lie algebra g of G there exists a subspace m with (subspace direct sum) and In this case the corresponding manifold M = G/H is called a reductive homogeneous space and (g,) (or (G,H)) a reductive pair. In this paper we shall show how to construct invariant pseudo-Riemannian connections on suitable reductive homogeneous spaces M which make M into an Einstein manifold.

This publication has 5 references indexed in Scilit: