Functional replacement of Trypanosoma brucei Argonaute by the human slicer Argonaute2

Abstract
RNA interference (RNAi) is widespread throughout the eukaryotic lineage, from protozoa to man. Central to all RNAi phenomena is a member of the Argonaute protein family, and, in the case of dsRNA-triggered mRNA cleavage, the Ago protein functions as the RNAi endonuclease or slicer. However, at present there is no definite experimental evidence that slicer Argonautes can be interchanged between distantly related organisms. Here, we show that the human slicer Argonaute2 (HsAgo2), but not HsAgo1, functions in RNAi in the early divergent protozoan Trypanosoma brucei, thus mimicking the situation in mammalian cells. This finding indicates that the basic features of the RNAi mechanism are conserved from T. brucei to man.