Site-Directed Mutations Affecting the Spectroscopic Characteristics and Midpoint Potential of the Primary Donor in Photosystem I

Abstract
Photosystem I is a member of the iron−sulfur center or type I reaction centers. The primary electron donor in photosystem I is a chlorophyll a dimer termed P700. The biophysical properties of P700 are well understood, but the protein environment that gives it such unique properties is unknown. We have characterized site-directed mutants of the photosystem I reaction center protein PsaB and identified an amino acid, His-656, that interacts closely with one of the P700 chlorophylls. Mutation of His-656 to Asn or Ser increases the oxidation midpoint potential of P700/P700+ by 40 mV. The P700/P700+ optical difference spectra show the appearance of a new bleaching band at 667 nm. Electron nuclear double resonance spectroscopy indicates a significant increase in the hyperfine coupling corresponding to methyl protons at position 12 of the spin carrying chlorophyll a of P700+. The implication of these results to current structural models of the photosystem I reaction center is discussed.