Discrete dynamic models for freeway incident detection systems

Abstract
This paper considers the problem of freeway incident detection within the general framework of computer‐based freeway surveillance and control. A new approach to the detection of freeway traffic incidents is presented based on a discrete‐time stochastic model of the form ARIMA (0, 1, 3) that describes the dynamics of traffic occupancy observations. This approach utilizes real‐time estimates of the variability in traffic occupancies as detection thresholds, thus eliminating the need for threshold calibration and lessening the problem of false‐alarms. Because the moving average parameters of the ARIMA (0, 1, 3) model change over time, these parameters can be updated occasionally. The performance of the developed detection algorithm has been evaluated in terms of detection rate, false‐alarm rate, and average time‐lag to detection, using a total of 1692 minutes of occupancy observations recorded during 50 representative traffic incidents.

This publication has 9 references indexed in Scilit: