β-cyclodextrin complexes of celecoxib: Molecular-modeling, characterization, and dissolution studies

Abstract
Celecoxib, a specific inhibitor of cycloxygenase-2 (COX-2) is a poorly water-soluble nonsteroidal anti-inflammatory drug with relatively low bioavailability. The effect of β-cyclodextrin on the aqueous solubility and dissolution rate of celecoxib was investigated. The possibility of molecular arrangement of inclusion complexes of celecoxib and β-cyclodextrin were studied using molecular modeling and structural designing. The results offer a better correlation in terms of orientation of celecoxib inside the cyclodextrin cavity. Phase-solubility profile indicated that the solubility of celecoxib was significantly increased in the presence of β-cyclodextrin and was classified as AL-type, indicating the 1∶1 stoichiometric inclusion complexes. Solid complexes prepared by freeze drying, evaporation, and kneading methods were characterized using differential scanning calorimetry, powder x-ray diffractometry, and scanning electron microscopy. In vitro studies showed that the solubility and dissolution rate of celecoxib were significantly improved by complexation with β-cyclodextrin with respect to the drug alone. In contrast, freeze-dried complexes showed higher dissolution rate than the other complexes.