Cell volume regulation in cultured cerebellar granule neurons

Abstract
Cultured rat cerebellar granule neurons exposed to solutions of reduced osmolarity, responded initially by swelling followed by a regulatory volume decrease (RVD) which is completed within 15 min. Increasing external osmolarity lead to cell shrinking but no evidence of volume regulation was observed within 1 hr. Replacing Na+ by choline did not affect RVD whereas N‐methyl‐D‐glucamine accelerated the volume recovery and K+ suppressed it completely. The blockade of RVD in high extracellular K+ was only observed when chloride and nitrate but not sulfate or gluconate were the accompanying anions. Replacing intracellular Cl, by long incubations with gluconate, markedly inhibited RVD. Removal of extracellular Ca2+ or addition of dantrolene which blocks Ca2+ released from intracellular stores had no effect on RVD. Increasing extracellular taurine prevented RVD. These results indicate that membrane permeability to K+, Cl, and taurine is increased by hyposmolarity and suggest the involvement of these molecules in RVD in granule neurons.