Abstract
A set D of k-letter words is called a comma-free dictionary (2), if whenever (a1a2 . . . ak) and (b1b2 . . . bk) are in D, the "overlaps" (a2a3 . . . akb1), (a3a4 . . . akb1b2), . . . , (akb1 . . . bk-1) are not in D. We say that two k-letter words are in the same equivalence class if one is a cyclic permutation of the other. An equivalence class is called complete if it contains k distinct members. Comma-freedom is violated if we choose words from incomplete equivalence classes, or if more than one word is chosen from the same complete class.

This publication has 1 reference indexed in Scilit: