Abstract
Dynamic stability of a general nonconservative system of n degrees of freedom is investigated. A sufficient and necessary condition for the stability of such a system is developed. It represents a simplified criterion based on the famous Lyapunov’s theorem which is proved afresh using λ-matrix methods only. When this criterion is adopted, it reduces the number of equations in Lyapunov’s method to less than half. A systematic procedure is then suggested for the stability investigation and its use is illustrated through a numerical example at the end of the paper.

This publication has 0 references indexed in Scilit: