Young Red Spheroidal Galaxies in the Hubble Deep Fields: Evidence for a Truncated IMF below 2M_solar and a Constant Space Density to z~2

  • 28 February 1999
Abstract
The optical-IR images of the Northern and Southern Hubble Deep Fields are used to measure the spectral and density evolution of early-type galaxies. The mean optical SED is found to evolve passively towards a mid F-star dominated spectrum by z ~ 2. We demonstrate with realistic simulations that hotter ellipticals would be readily visible if evolution progressed blueward and brightward at z > 2, following a standard IMF. The colour distributions are best fitted by a `red' IMF, deficient above ~2.5 M_solar and with a spread of formation in the range 1.5 < z_f < 2.5. Traditional age dating is spurious in this context, a distant elliptical can be young but appear red, with an apparent age >3 Gyrs independent of its formation redshift. Regarding density evolution, we demonstrate that the sharp decline in numbers claimed at z > 1 results from a selection bias against distant red galaxies in the optical, where the flux is too weak for morphological classification, but is remedied with relatively modest IR exposures revealing a roughly constant space density to z ~ 2. We point out that the lack of high mass star-formation inferred here and the requirement of metals implicates cooling-flows of pre-enriched gas in the creation of the stellar content of spheroidal galaxies. Deep-field X-ray images will be very helpful to examine this possibility.

This publication has 0 references indexed in Scilit: