Subcutaneous Adipocytes Can Differentiate into Bone-Forming Cellsin Vitroandin Vivo
- 1 March 2004
- journal article
- research article
- Published by Mary Ann Liebert Inc in Tissue Engineering
- Vol. 10 (3-4) , 381-391
- https://doi.org/10.1089/107632704323061744
Abstract
Interconversion of bone marrow osteoblasts and adipocytes has been reported previously. However, the osteogenic potential of extramedullary adipocytes is not known. Thus, we incubated a pure culture of human subcutaneous adipocytes in control medium for 1-2 weeks. Afterward, the cells were incubated in either osteoblast medium (OB medium) containing various combinations of calcitriol, dexamethasone, ascorbic acid, and β-glycerophosphate or in adipocyte medium (AD medium) containing HEPES, biotin, pantothenate, insulin, triiodothyronine, dexamethasone, and isobutylmethylxanthine for 4 weeks. Expression of osteoblastic and adipocytic phenotypes was examined by determination of lineage-specific mRNA markers and in vitro adipocyte and osteoblast formation. Cells were also implanted, mixed with hydroxyapatite-tricalcium phosphate powder, in the subcutaneous tissue of immunodeficient mice in order to assess in vivo bone formation potential. One week after incubation in control medium, cells formed fusiform elongated fibroblast-like cells. In OB medium, cells stained positive for alkaline phosphatase (AP) and expressed mRNAs encoding Cbfa1/Runx2, AP, and osteocalcin. In AD medium cells reacquired adipocyte morphology with multilocular lipid-filled cells. Also, the cells expressed adipocyte-specific mRNA markers: lipoprotein lipase and peroxisome proliferator-activated receptor γ2. Bone was formed only in the in vivo implants of cells incubated in OB medium. In conclusion, extramedullary adipocytes can transdifferentiate to bone-forming cells. Because of their ease of isolation, adipocytes may be good candidates for tissue-engineering protocols aimed at creating bone tissue for the repair of nonunion fractures and large bone defects.Keywords
This publication has 35 references indexed in Scilit:
- Neurogenic differentiation of murine and human adipose-derived stromal cellsBiochemical and Biophysical Research Communications, 2002
- Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cellsNature Biotechnology, 2002
- Regulation of UCP1, UCP2, and UCP3 mRNA Expression in Brown Adipose Tissue, White Adipose Tissue, and Skeletal Muscle in Rats by EstrogenBiochemical and Biophysical Research Communications, 2001
- Multilineage Cells from Human Adipose Tissue: Implications for Cell-Based TherapiesTissue Engineering, 2001
- Sulfated Glycans Stimulate Endocytosis of the Cellular Isoform of the Prion Protein, PrPC, in Cultured CellsJournal of Biological Chemistry, 1995
- Bone morphogenetic proteins inhibit adipocyte differentiation by bone marrow stromal cellsJournal of Cellular Biochemistry, 1995
- 1,25-dihydroxyvitamin D3 stimulates adipocyte differentiation in cultures of fetal rat calvaria cells: comparison with the effects of dexamethasoneEndocrinology, 1994
- Mechanism of glucocorticoid regulation of alkaline phosphatase gene expression in osteoblast‐like cellsEuropean Journal of Biochemistry, 1990
- Clonal preadipocyte cell lines with different phenotypes derived from murine marrow stroma: Factors influencing growth and Adipogenesis in vitroJournal of Cellular Physiology, 1982
- Bone marrow adipose tissue: Response to acute starvationAmerican Journal of Hematology, 1979