Histone deacetylase-associating Atrophin proteins are nuclear receptor corepressors

Abstract
Drosophila Tailless (Tll) is an orphan nuclear receptor involved in embryonic segmentation and neurogenesis. Although Tll exerts potent transcriptional repressive effects, the underlying molecular mechanisms have not been determined. Using the established regulation of knirps by tll as a paradigm, we report that repression of knirps by Tll involves Atrophin, which is related to vertebrate Atrophin-1 and Atrophin-2. Atrophin interacts with Tll physically and genetically, and both proteins localize to the same knirps promoter region. Because Atrophin proteins interact with additional nuclear receptors and Atrophin-2 selectively binds histone deacetylase 1/2 (HDAC1/2) through its ELM2 (EGL-27 and MTA1 homology 2)/SANT (SWI3/ADA2/N-CoR/TFIII-B) domains, our study establishes that Atrophin proteins represent a novel class of nuclear receptor corepressors.