Abstract
Soils of the peach growing region of the Southeastern Coastal Plain are highly leached and excessively acid, with inherently low concentrations of subsoil magnesium (Mg). A greenhouse experiment was conducted to determine the effects of varying Mg concentrations at low pH on growth and Mg uptake of three peach seedling cultivars commonly used as rootstock in the region. Seedlings of ‘Lovell’, ‘Elberta’, [Prunus persica (L.) Batsch] and ‘Nemaguard’ [Prunus persica (L.) Batsch X Prunus davidiana Carriere] were grown for 36 days in nutrient solution containing 9, 21, 42, 84, 167, 333, and 667 μM Mg. Magnesium concentration in solution did not increase lateral length, number of laterals, trunk cross‐sectional area, or root volume. All terminal growth responses were cultivar related. Magnesium concentration in the leaves, stems, and roots were increased either by quadratic or cubic relationship with solution Mg concentration while Mg uptake rate was increased linearly with solution Mg concentration with all three seedling cultivar. Uptake rates of calcium, manganese, and zinc, and tissue concentrations of phosphorus, manganese, and zinc decreased with increasing Mg concentrations in nutrient solution. Predicted Mg uptake rates by‐regression analysis revealed a cubic uptake isotherm for Nemaguard and a quadratic isotherm for Elberta. Predicted tissue Mg concentration followed similar patterns of accumulation for leaves and stems, but root Mg concentration followed a cubic uptake isotherm for all three seedlings. The linear Mg uptake at low pH may be an important physiological characteristic that enables Lovell seedlings to outperform either Elberta or Nemaguard when used as a rootstock in the southeastern soils.