Finding mesoscopic communities in sparse networks

Abstract
We suggest a fast method to find possibly overlapping network communities of a desired size and link density. Our method is a natural generalization of the finite-$T$ superparamegnetic Potts clustering introduced by Blatt, Wiseman, and Domany (Phys. Rev. Lett. v.76, 3251 (1996) and the recently suggested by Reichard and Bornholdt (Phys. Rev. Lett. v.93, 21870 (2004)) annealing of Potts model with global antiferromagnetic term. Similarly to both preceding works, the proposed generalization is based on ordering of ferromagnetic Potts model; the novelty of the proposed approach lies in the adjustable dependence of the antiferromagnetic term on the population of each Potts state, which interpolates between the two previously considered cases. This adjustability allows to empirically tune the algorithm to detect the maximum number of communities of the given size and link density. We illustrate the method by detecting protein complexes in high-throughput protein binding networks.

This publication has 0 references indexed in Scilit: