Solid-Phase Synthesis of Polymers Using the Ring-Opening Metathesis Polymerization

Abstract
We report a general method for the solid-phase synthesis of polymers via the ring-opening metathesis polymerization (ROMP). The method involves polymerization in solution to form a block copolymer, immobilization of the polymer via reaction of one block with a resin-bound functional group, modification of the other block, and liberation of the polymer from the resin. We demonstrated the utility of this approach by generating a block copolymer with an N-hydroxysuccinimidyl ester-substituted block (for on-resin functionalization) and a maleimide-substituted block (for conjugation to the resin). We showed that the Diels−Alder reaction can be employed to immobilize the polymers and that amines of diverse structure can be used to modify the resin-bound polymers. The reversibility of the furan−maleimide Diels−Alder adduct was exploited to liberate the polymer from the support. Specifically, treatment of the resin with cyclopentadiene resulted in complete polymer release. The resulting polymers are functional: they were as potent in assays with the lectin concanavalin A as polymers generated by traditional solution routes. We anticipate that this method can be used for the rapid synthesis of diverse polymers via ROMP.