Amino-terminal protein-protein interaction motif (POZ-domain) is responsible for activities of the promyelocytic leukemia zinc finger-retinoic acid receptor-alpha fusion protein.
- 16 April 1996
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 93 (8) , 3624-3629
- https://doi.org/10.1073/pnas.93.8.3624
Abstract
Promyelocytic leukemia zinc finger-retinoic acid receptor a (PLZF-RARalpha), a fusion receptor generated as a result of a variant t(11;17) chromosomal translocation that occurs in a small subset of acute promyelocytic leukemia (APL) patients, has been shown to display a dominant-negative effect against the wild-type RARalpha/retinoid X receptor alpha (RXRalpha). We now show that its N-terminal region (called the POZ-domain), which mediates protein-protein interaction as well as specific nuclear localization of the wild-type PLZF and chimeric PLZF-RARalpha proteins, is primarily responsible for this activity. To further investigate the mechanisms of PLZF-RARalpha action, we have also studied its ligand-receptor, protein-protein, and protein-DNA interaction properties and compared them with those of the promyelocytic leukemia gene (PML)-RARalpha, which is expressed in the majority of APLs as a result of t(15;17) translocation. PLZF-RARalpha and PML-RARalpha have essentially the same ligand-binding affinities and can bind in vitro to retinoic acid response elements (RAREs) as homodimers or heterodimers with RXRalpha. PLZF-RARalpha homodimerization and heterodimerization with RXRalpha were primarily mediated by the POZ-domain and RARalpha sequence, respectively. Despite having identical RARalpha sequences, PLZF-RARalpha and PML-RARalpha homodimers recognized with different affinities distinct RAREs. Furthermore, PLZF-RARalpha could heterodimerize in vitro with the wild-type PLZF, suggesting that it may play a role in leukemogenesis by antagonizing actions of not only the retinoid receptors but also the wild-type PLZF and possibly other POZ-domain-containing regulators. These different protein-protein interactions and the target gene specificities of PLZF-RARalpha and PML-RARalpha may underlie, at least in part, the apparent resistance of APL with t(11;17) to differentiation effects of all-trans-retinoic acid.Keywords
This publication has 28 references indexed in Scilit:
- The POZ domain: a conserved protein-protein interaction motif.Genes & Development, 1994
- TRANSLOCATION OF THE RARα LOCUS TO THE PML OR PLZF GENE IN ACUTE PROMYELOCYTIC LEUKAEMIABritish Journal of Haematology, 1994
- Fusion of a Kinase Gene, ALK , to a Nucleolar Protein Gene, NPM , in Non-Hodgkin's LymphomaScience, 1994
- PLZF-RAR alpha fusion proteins generated from the variant t(11;17)(q23;q21) translocation in acute promyelocytic leukemia inhibit ligand-dependent transactivation of wild-type retinoic acid receptors.Proceedings of the National Academy of Sciences, 1994
- Retinoic acid regulates aberrant nuclear localization of PML-RARα in acute promyelocytic leukemia cellsCell, 1994
- Formation of nucleophosmin/B23 oligomers requires both the amino‐and the carboxyl‐terminal domains of the proteinEuropean Journal of Biochemistry, 1991
- The PML-RARα fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RARCell, 1991
- Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RARα with a novel putative transcription factor, PMLCell, 1991
- The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor α gene to a novel transcribed locusNature, 1990
- Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferaseGene, 1988