Learning networks in health and Parkinson's disease: Reproducibility and treatment effects
- 23 April 2003
- journal article
- research article
- Published by Wiley in Human Brain Mapping
- Vol. 19 (3) , 197-211
- https://doi.org/10.1002/hbm.10115
Abstract
In a previous H215O/PET study of motor sequence learning, we used principal components analysis (PCA) of region of interest (ROI) data to identify performance‐related activation patterns in normal subjects and patients with Parkinson's disease (PD). In the present study, we determined whether these patterns predicted learning performance in subsequent normal and untreated PD cohorts. Using a voxel‐based PCA approach, we correlated the changes in network activity that occurred during antiparkinsonian treatment and their relationship to learning performance. We found that the previously identified ROI‐based patterns correlated with learning performance in the prospective normal (P< 0.01) and untreated PD (P< 0.05) cohorts. Voxel analysis revealed that target retrieval was related to a network characterized by bilateral activation of the dorsolateral prefrontal, premotor and anterior cingulate cortex, the precuneus, and the occipital association areas as well as the right ventral prefrontal and inferior parietal regions. Target acquisition was associated with a different network involving activation of the caudate, putamen, and right dentate nucleus, as well as the left ventral prefrontal and inferior parietal areas. Antiparkinsonian therapy gave rise to changes in retrieval performance that correlated with network modulation (P< 0.01). Increases in network activation and learning performance occurred with internal pallidal deep brain stimulation (GPi DBS); decrements in these measures were present with levodopa. Our findings suggest that network analysis of activation data can provide stable descriptors of learning performance. Network quantification can provide an objective means of assessing the effects of therapy on cognitive functioning in neurodegenerative disorders. Hum. Brain Mapping 11:197–211, 2003.Keywords
This publication has 72 references indexed in Scilit:
- Pallidal stimulation for Parkinsonism: Improved brain activation during sequence learningAnnals of Neurology, 2002
- Movement Preparation and Motor IntentionNeuroImage, 2001
- Role of Dopamine in Learning and MemoryDrugs & Aging, 2000
- Emotion, Decision Making and the Orbitofrontal CortexCerebral Cortex, 2000
- Changes in cerebral activity pattern due to subthalamic nucleus or internal pallidum stimulation in Parkinson's diseaseAnnals of Neurology, 1997
- Roles of Cerebellar Cortex and Nuclei in Motor Learning: Contradictions or Clues?Neuron, 1997
- Learning to find your way: a role for the human hippocampal formationProceedings Of The Royal Society B-Biological Sciences, 1996
- Associative learning in patients with cerebellar ataxia.Behavioral Neuroscience, 1996