Sol-Gel Syntheses and Characterization of BaTi4O9 and BaTiO3-Powders

Abstract
Sol-gel processes for the synthesis of high purity, ultrafine BaTi4O9 and BaTiO3 powders are described. Hydrolysis of an alkoxide precursor derived from barium metal and titanium (IV) isopropoxide resulted in formation of powders consisting of ultrafine (0.2 to 1.0 μm) spherical particles. These amorphous precursor powders were converted to crystalline BaTi4O9 powders (particle size 2–3 μm) by heat treatment at 1100 C. The sol-gel process for the synthesis of BaTiOj powders utilized chemical polymerization between moisture insensitive and relatively inexpensive barium acetate and titanium (IV) isopropoxide in the presence of acetic acid. The gel to ceramic conversion was achieved by firing the gels at 1000 °C to obtain high purity, stoichiometric BaTiO3 powders. The powders were sintered to obtain relatively dense (90 % relative density) ceramic bodies.

This publication has 11 references indexed in Scilit: