Migration in spruce bark beetles (Ips typographis L.) and the efficiency of pheromone traps

Abstract
Mark‐release‐recapture experiments with both newly emerged and flight experienced Ips typographus L. were performed in a pine forest near Prague. Three concentric trap circles around the release site with a radius of 5 m, 200 m and 500 m, and intertrap distances of 6 m, 16 m and. maximally, 40 m, were installed with the intention of collecting all dispersing bark beetles ready to respond to pheromone lures. The results show that even without wind and no potential host trees in the surroundings, only about one‐third (35.4%) of the emerging beetles in an infested site can be eliminated locally with phermomone traps. At least 12.2% of the emerging beetles (25.7% of the recaptures), perform an adaptive migration flight, which brings them beyond the range of local pheromone traps. The estimated proportion of emigrants can rise over 50%, if most of the freshly emerged beetles that have never been recaptured are assumed to have left the experimental area. Electroantennograms recorded in the laboratory at different times after emergence indicate that the delayed response to aggregation pheromones in migrating bark beetles is not the result of a delayed maturation of the antennal receptor cells, but obviously governed by the central nervous system. The notion of precopulatory migration in 25–50% of the individuals in an I. typographus population can explain why pheromone traps can never eliminate all emerging beetles, and why so many bark beetles can be collected far away from any breeding sites.