Molecular Modelling of Chymotrypsin-Substrate Interactions: Calculation of Enantioselectivity

Abstract
A method has been developed for the calculation of the enantioselectivity of chymotrypsin catalysed hydrolytic reactions using molecular mechanics and molecular dynamics. Nine different ester substrates, which are hydrolysed by the enzyme over a wide range of reaction rates have been studied. Models of the transition state of the ester hydrolysis were built using computer aided molecular modelling. The energies of the transition state models were calculated by molecular mechanics and molecular dynamics methods. The point charges of the substrates were modelled from known force field parameters and by semiempirical methods. The difference in free energy of activation between the enantiomers of each substrate were compared with experimental values. The calculations approximated the experimental results. The calculated structure of the transition state model of the chymotrypsin catalysed hydrolysis of acetyl-phenylalanine ester was virtually the same as the published crystal structure of a chymotrypsin-trifluoromethyl ketone inhibitor complex (Brady et al., Biochemistry 29: 7600-7607, 1990).