Construction of an altered proton donation mechanism in Escherichia coli dihydrofolate reductase

Abstract
We have explorad the substrate protonation mechanism of Escherichia coli dihydrofolate reductase by changing the location of the proton donor. A double mutant was constructed in which the proton donor of the wild-type enzyme, aspartic acid-27, has been changed to serine and simultaneously an alternative proton donor, glutamic acid, has replaced threonine at position 113. The active site of the resulting variant enzyme molecule should therefore somewhat resemble that proposed for the R67 plasmid-encoded dihydrofolate reductase [Matthews, D. A., Smith, S. L., Baccanari, D. P., Burchall, J. J., Oatley, S. J., and Kraut, J. (1986) Biochemistry 25, 4194]. At pH 7, the double-mutant enzyme has a 3-fold greater kcat and an unchanged Km(dihydrofolate) as compared with the single-mutant Asp-27 .fwdarw. Ser enzyme described previously [Howell, E. E., Villafranca, J. E., Warren, M. S., Oatley, S. J., and Kraut, J. (1986) Science (Washington, D.C.) 231, 1123]. Additionally, its activity vs pH profiles, together with observed deuterium isotope effects, suggest that catalysis depends on an acidic group with a pKa of 8. It is concluded that the dihydropteridine ring of a bound substrate molecule can indeed be protonated by a glutamic acid side chain at position 113 (instead of an aspartic acid side chain at position 27), but with greatly decreased efficiency: at pH 7, the double mutant still has a 25-fold lower kcat (1.2 s-1) and a 2900-fold lower kcat/Km(dihydrofolate) (86 .times. 103 s-1 M-1) than the wild-type enzyme.