Vector linear time series models

Abstract
This paper presents proofs of the strong law of large numbers and the central limit theorem for estimators of the parameters in quite general finite-parameter linear models for vector time series. The estimators are derived from a Gaussian likelihood (although Gaussianity is not assumed) and certain spectral approximations to this. An important example of finite-parameter models for multiple time series is the class of autoregressive moving-average (ARMA) models and a general treatment is given for this case. This includes a discussion of the problems associated with identification in such models.