Nonprolyl cis peptide bonds in unfolded proteins cause complex folding kinetics.

Abstract
Folding of tendamistat, an inhibitor of alpha-amylase, is a fast two-state process accompanied by two minor slow reactions, which were assigned to prolyl isomerization. In a proline-free variant, 5% of the molecules still fold slowly with a rate constant of 2.5 s(-1). This reaction is caused by a slow equilibrium between two populations of unfolded molecules. The time constant for this equilibration process, its sensitivity to LiCl and its temperature dependence identify it as a cis-trans isomerization of nonprolyl peptide bonds. Although nonprolyl peptide bonds have the cis conformation populating only approximately 0.15% in unfolded proteins, their large number generates a significant fraction of slow-folding molecules. This emphasizes that heterogeneous populations in an unfolded protein can induce complex folding kinetics on various time scales.

This publication has 0 references indexed in Scilit: