Enforced expression of wild-type p53 curtails the transcription of the O-6-methylguanine-DNA methyltransferase gene in human tumor cells and enhances their sensitivity to alkylating agents
- 1 May 2001
- journal article
- research article
- Vol. 7 (5) , 1398-1409
Abstract
We used isogenic human tumor cell Lines to investigate the specific and direct effects of wild-type (wt) p53 on the expression of O-6-methylguanine-DNA methyltransferase (MGMT), a DNA repair protein that confers tumor resistance to many anticancer alkylating agents. A p53-null, MGMT-profficient lung tumor cell line (H1299) was engineered to express wt p53 in a tetracycline-regulated system. High levers of p53 induction achieved by tetracycline withdrawal were accompanied by G, cell cycle arrest without significant apoptosis in this cell line. p53 accumulation resulted in a gradual and dramatic loss of MGMT mRNA, protein, and enzyme activity, whose levels were undetectable by day 3 of induction. The loss of MGMT protein was, however, not due to its degradation because the ubiquitin-promoted in vitro degradation of MGMT, which mediates the cellular disposal of the repair protein, was not altered by p53, Run-on transcription assays revealed a significant reduction in the rate of MGMT gene transcription. The negative regulation of MGMT expression by wt p53 was confirmed in two other human isogenic cell lines, namely, the GM47.23 glioblastoma, which contains a dexamethasone-inducible wt p53, and the H460 lung cancer cell line, in which wt p53 had been inactivated by the human papillomavirus E6 protein. Furthermore, a panel of four human tumor cell lines, including gliomas with wt p53 status, displayed markedly lower levels of MGMT gene transcripts than those having p53 mutations. Induction of wt p53 in these models led to a 3- and 2-fold increase in sensitivity to 1,3-bis(2-chloroethyl)-1-nitrosourea and temozolomide, respectively, which generate the MGMT-repairable O-6-alkyl adducts in DNA, These results demonstrate that p53 is a negative regulator of MGMT gene expression and can create a MGMT-depleted state in human turners similar to that achieved by O-6-benzylguanine, a potent inhibitor of MGMT currently undergoing clinical trials, Thus, our study exposes an additional benefit associated with p53 gene therapy and provides a strong biochemical rationale for combining the MGMT-directed alkylators with p53 gene transfer to achieve improved antitumor efficacy.This publication has 5 references indexed in Scilit:
- Structure, Function, and Inhibition of O6-Alkylguanine-DNA AlkyltransferasePublished by Elsevier ,2008
- p53 is involved in regulation of the DNA repair gene O6-methylguanine-DNA methyltransferase (MGMT) by DNA damaging agentsOncogene, 1998
- Wild-type p53 suppresses transcription of the human O-6-methylguanine-DNA methyltransferase gene1996
- The role of mRNA stability and transcription in 06-methylguanine DNA methyltransferase (MGMT) expression in Mer+ human tumor cellsCarcinogenesis: Integrative Cancer Research, 1995
- Characterization of the promoter region of the human O6-methylguanine-DNA methyltransferase geneNucleic Acids Research, 1991