Abstract
Genes are large polar molecules that are not readily taken up by cells, and considerable efforts have been made to develop suitable vectors to deliver DNA to the nuclei of target cells. These include a number of synthetic compounds such as cationic liposomes and cationic polymers, which complex with DNA and fuse with cell membranes to gain entry. Replication deficient adenoviruses can be engineered to carry genes of interest, but these vectors have to be individually constructed and, because of the ability of these genetically engineered infectious agents to form aerosols, cumbersome and expensive safety procedures must be employed. The fact that many investigators have resorted to these viruses attests to the ineffectiveness of synthetic vectors,3 even under optimised conditions. Effective gene transfer can be accomplished in cultured cells with adenoviral vectors, but very high titres are often required to achieve modest levels of gene expression in vivo. In particular, the medial smooth muscle cell of an intact artery appears to be a relatively resistant target for gene transfer.4

This publication has 0 references indexed in Scilit: