Mechanical deformation of vessel wall and shear stress determine the basal release of endothelium-derived relaxing factor in the intact rabbit coronary vascular bed.
- 1 January 1992
- journal article
- research article
- Published by Wolters Kluwer Health in Circulation Research
- Vol. 70 (1) , 123-130
- https://doi.org/10.1161/01.res.70.1.123
Abstract
We investigated the mechanisms that are responsible for the basal release of endothelium-derived relaxing factor (EDRF), which is likely to be identical with nitric oxide, in the intact coronary circulation. The increase in cGMP content of platelets passing through the coronary bed of the isolated rabbit heart was used as an index of EDRF release. Platelet cGMP content after passage through the heart under control conditions (flow rate of 20 ml/min) amounted to 0.50 +/- 0.10 pmol/mg protein. Inhibition of endothelial nitric oxide synthesis by 30 microM NG-nitro-L-arginine (L-NNA) reduced this amount by more than 60%. Increasing flow rate from 20 ml/min to 40 and 60 ml/min led to flow-dependent dilation as reflected by the subsequent drop in perfusion pressure after an initial rise. The flow-dependent dilation was associated with a significant increase in the normalized platelet cGMP content. L-NNA abolished completely both the flow-dependent dilation and the increase in platelet cGMP content. Increasing shear stress by a strong vasoconstriction (1 nM endothelin-1) at constant flow was also accompanied by a 2.5-fold increase in platelet cGMP content. To investigate whether mechanical forces applied to the vascular wall by the myocardial contraction cycle were also a stimulus for EDRF release, cardiac arrest was induced by a continuous infusion of mepivacaine (final concentration, 0.02%). Under these conditions, a decrease in platelet cGMP content comparable to that after nitric oxide synthesis inhibition was observed in the arrested heart.(ABSTRACT TRUNCATED AT 250 WORDS)Keywords
This publication has 14 references indexed in Scilit:
- Large coronary arteries in humans are responsive to changing blood flow: An endothelium-dependent mechanism that fails in patients with atherosclerosisJournal of the American College of Cardiology, 1990
- Functional state of the endothelium determines the response to endothelin in the coronary circulationCardiovascular Research, 1990
- Nitric oxide synthesized from L-arginine regulates vascular tone in the coronary circulation of the rabbitBritish Journal of Pharmacology, 1989
- Local Anesthetics Inhibit Endothelium-dependent VasodilationAnesthesiology, 1989
- Endothelin-1 and Endothelin-3 Release EDRF from Isolated Perfused Arterial Vessels of the Rat and RabbitJournal of Cardiovascular Pharmacology, 1989
- Differential Vascular Sensitivity to Luminally and Adventitially Applied Endothelin-1Journal of Cardiovascular Pharmacology, 1989
- Nitric oxide release from the isolated guinea pig heartEuropean Journal of Pharmacology, 1988
- Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factorNature, 1987
- Crucial role of endothelium in the vasodilator response to increased flow in vivo.Hypertension, 1986
- Role of endothelium in responses of vascular smooth muscle.Circulation Research, 1983