The Influence of Large-Scale Structure on Halo Shapes and Alignments

Abstract
Alignments of galaxy clusters (the Binggeli effect), as well as of galaxies themselves have long been studied both observationally and theoretically. Here we test the influence of large-scales structures and tidal fields on the shapes and alignments of cluster-size and galaxy-size dark matter halos. We use a high-resolution N-body simulation of a $\Lambda$CDM universe, together with the results of Colberg et al. (2005), who identified filaments connecting pairs of clusters. We find that cluster pairs connected by a filament are strongly aligned with the cluster-cluster axis, whereas unconnected ones are not. For smaller, galaxy-size halos, there also is an alignment signal, but its strength is independent of whether the halo is part of an obvious large-scale structure. Additionally, we find no measureable dependence of galaxy halo shape on membership of a filament. We also quantify the influence of tidal fields and find that these do correlate strongly with alignments of halos. The alignments of most halos are thus caused by tidal fields, with cluster-size halos being strongly aligned through the added mechanism of infall of matter from filaments.

This publication has 0 references indexed in Scilit: