Missing Observations in Multivariate Statistics I. Review of the Literature

Abstract
In this paper we review the literature on the problem of handling multivariate data with observations missing on some or all of the variables under study. We examine the ways that statisticians have devised to estimate means, variances, correlations and linear regression functions from such data and refer to specific computer programs for carrying out the estimation. We show how the estimation problems can be simplified if the missing data follows certain patterns. Finally, we outline the statistical properties of the various estimators.

This publication has 16 references indexed in Scilit: