Coloring with no $2$-Colored $P_4$'s
- 2 January 2004
- journal article
- Published by The Electronic Journal of Combinatorics in The Electronic Journal of Combinatorics
- Vol. 11 (1) , R26
- https://doi.org/10.37236/1779
Abstract
A proper coloring of the vertices of a graph is called a star coloring if every two color classes induce a star forest. Star colorings are a strengthening of acyclic colorings, i.e., proper colorings in which every two color classes induce a forest. We show that every acyclic $k$-coloring can be refined to a star coloring with at most $(2k^2-k)$ colors. Similarly, we prove that planar graphs have star colorings with at most 20 colors and we exhibit a planar graph which requires 10 colors. We prove several other structural and topological results for star colorings, such as: cubic graphs are $7$-colorable, and planar graphs of girth at least $7$ are $9$-colorable. We provide a short proof of the result of Fertin, Raspaud, and Reed that graphs with tree-width $t$ can be star colored with ${t+2\choose2}$ colors, and we show that this is best possible. A proper coloring of the vertices of a graph is called a star coloring if every two color classes induce a star forest. Star colorings are a strengthening of acyclic colorings, i.e., proper colorings in which every two color classes induce a forest. We show that every acyclic $k$-coloring can be refined to a star coloring with at most $(2k^2-k)$ colors. Similarly, we prove that planar graphs have star colorings with at most 20 colors and we exhibit a planar graph which requires 10 colors. We prove several other structural and topological results for star colorings, such as: cubic graphs are $7$-colorable, and planar graphs of girth at least $7$ are $9$-colorable. We provide a short proof of the result of Fertin, Raspaud, and Reed that graphs with tree-width $t$ can be star colored with ${t+2\choose2}$ colors, and we show that this is best possible.
Keywords
This publication has 0 references indexed in Scilit: