Abstract
The structureless pseudopotential model of Perdew, Tran, and Smith [Phys. Rev. B 42, 11 627 (1990)] is applied to determine surface properties of Al, Mg, Pb, Zn, and alkali metals. Results of self-consistent Kohn-Sham calculations of surface energies, work functions, and the location of the image plane both for a flat-metal (uncorrugated) surface and for the exposed single-crystal faces are presented. In contrast to jellium, the calculated distance from the image-plane position to the uniform positive background edge increases with the decreasing mean electron density in the bulk metal. The calculated surface energies show more realistic weaker face dependence compared to the previous perturbational or variational calculations of this type and agree well with those predicted by the second-order pseudopotential perturbation theory.