Proteomic analysis identifies in vivo candidate matrix metalloproteinase‐9 substrates in the left ventricle post‐myocardial infarction

Abstract
Matrix metalloproteinase‐9 (MMP‐9) deletion has been shown to improve remodeling of the left ventricle post‐myocardial infarction (MI), but the mechanisms to explain this improvement have not been fully elucidated. MMP‐9 has a broad range of in vitro substrates, but relevant in vivo substrates are incompletely defined. Accordingly, we evaluated the infarct regions of wild‐type (wt) and MMP‐9 null (null) mice using a proteomic strategy. Wt and null groups showed similar infarct sizes (48±3 in wt and 45±3% in null), indicating that both groups received an equal injury stimulus. Left ventricle infarct tissue was homogenized and analyzed by 2‐DE and MS. Of 31 spot intensity differences, the intensities of 9 spots were higher and 22 spots were lower in null mice compared to wt (all pin vivo candidate MMP substrates.