The SPANX gene family of cancer/testis-specific antigens: Rapid evolution and amplification in African great apes and hominids
- 18 February 2004
- journal article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 101 (9) , 3077-3082
- https://doi.org/10.1073/pnas.0308532100
Abstract
Human sperm protein associated with the nucleus on the X chromosome (SPANX) genes comprise a gene family with five known members (SPANX-A1, -A2, -B, -C, and -D), encoding cancer/testis-specific antigens that are potential targets for cancer immunotherapy. These highly similar paralogous genes cluster on the X chromosome at Xq27. We isolated and sequenced primate genomic clones homologous to human SPANX. Analysis of these clones and search of the human genome sequence revealed an uncharacterized group of genes, SPANX-N, which are present in all primates as well as in mouse and rat. In humans, four SPANX-N genes comprise a series of tandem duplicates at Xq27; a fifth member of this subfamily is located at Xp11. Similarly to SPANX-A/D, human SPANX-N genes are expressed in normal testis and some melanoma cell lines; testis-specific expression of SPANX is also conserved in mouse. Analysis of the taxonomic distribution of the long and short forms of the intron indicates that SPANX-N is the ancestral form, from which the SPANX-A/D subfamily evolved in the common ancestor of the hominoid lineage. Strikingly, the coding sequences of the SPANX genes evolved much faster than the intron and the 5' untranslated region. There is a strong correlation between the rates of evolution of synonymous and nonsynonymous codon positions, both of which are accelerated 2-fold or more compared to the noncoding sequences. Thus, evolution of the SPANX family appears to have involved positive selection that affected not only the protein sequence but also the synonymous sites in the coding sequence.Keywords
This publication has 35 references indexed in Scilit:
- EditorialFEMS Microbiology Reviews, 2003
- Cancer/testis‐associated genes: Identification, expression profile, and putative functionJournal of Cellular Physiology, 2003
- Caloramator viterbensis sp. nov., a novel thermophilic, glycerol-fermenting bacterium isolated from a hot spring in ItalyInternational Journal of Systematic and Evolutionary Microbiology, 2002
- Postcopulatory sexual selectionNature Reviews Genetics, 2002
- The rapid evolution of reproductive proteinsNature Reviews Genetics, 2002
- Segmental duplications and the evolution of the primate genomeNature Reviews Genetics, 2002
- Genomic sequence and transcriptional profile of the boundary between pericentromeric satellites and genes on human chromosome arm 10qHuman Molecular Genetics, 2000
- Gapped BLAST and PSI-BLAST: a new generation of protein database search programsNucleic Acids Research, 1997
- Diadem/crater defects in spermatozoa from two related angus bullsMolecular Reproduction and Development, 1990
- A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequencesJournal of Molecular Evolution, 1980