Polynomial Time Algorithms for Finding Integer Relations among Real Numbers
- 1 October 1989
- journal article
- Published by Society for Industrial & Applied Mathematics (SIAM) in SIAM Journal on Computing
- Vol. 18 (5) , 859-881
- https://doi.org/10.1137/0218059
Abstract
No abstract availableThis publication has 15 references indexed in Scilit:
- On the limits of computations with the floor functionInformation and Computation, 1988
- Polynomial factorization and nonrandomness of bits of algebraic and some transcendental numbersMathematics of Computation, 1988
- Minkowski's Convex Body Theorem and Integer ProgrammingMathematics of Operations Research, 1987
- A noninductive GL(n, Z) algorithm that constructs integral linear relations for n Z-linearly dependent real numbersJournal of Algorithms, 1987
- Polynomial time algorithms for finding integer relations among real numbersPublished by Springer Nature ,1986
- A short proof of the existence of vector Euclidean algorithmsProceedings of the American Mathematical Society, 1986
- Factoring polynomials with rational coefficientsMathematische Annalen, 1982
- Generalization of the Euclidean algorithm for real numbers to all dimensions higher than twoBulletin of the American Mathematical Society, 1979
- The Jacobi-Perron Algorithm Its Theory and ApplicationLecture Notes in Mathematics, 1971
- Allgemeine Theorie der kettenbruchähnlichen Algorithmen, in welchen jede Zahl aus drei vorhergehenden gebildet wird.Journal für die reine und angewandte Mathematik (Crelles Journal), 1868