Metabolism of very low- and low-density lipoproteins isolated from normolipidaemic Type 2 (non-insulin-dependent) diabetic patients by human monocyte-derived macrophages

Abstract
The very low- and low-density lipoprotein fractions were isolated from 16 normolipidaemic Type 2 (non-insulin-dependent) diabetic patients in good to fair glycaemic control and from corresponding age-, sex-, and race-matched, non-diabetic control subjects. Rates of cholesteryl ester synthesis averaged 268±31 vs 289±40 pmol 14C-cholesteryl oleate·-mg cell protein−1·20 h−1 for very low- and 506±34 vs 556±51 pmol 14C-cholesteryl oleate·mg cell protein−1·20 h−1 for low-density lipoproteins isolated from the Type 2 diabetic patients and control subjects, respectively, when they were incubated with human macrophages. A group of approximately one-third of the patients was selected for separate analyses because very low-density lipoproteins isolated from these patients did stimulate more cholesteryl ester synthesis when incubated with macrophages. There were no significant differences in the lipid composition of the lipoproteins isolated from the three groups of subjects. The relative proportion of apoprotein C to apoprotein E was significantly decreased (pp<0.02). There were no significant differences in the proportions of apoproteins C-III-0, C-III-1, or C-III-2 among the three groups. These studies suggest that in normolipidaemic Type 2 diabetic patients, the apoprotein composition of VLDL is abnormal and this may alter VLDL macrophage interactions and thus contribute to the increased prevalence of atherosclerosis in diabetic patients.

This publication has 51 references indexed in Scilit: