Self-diffusion of adatoms, dimers, and vacancies on Cu(100)

Abstract
We use ab initio static relaxation methods and semiempirical molecular-dynamics simulations to investigate the energetics and dynamics of the diffusion of adatoms, dimers, and vacancies on Cu(100). It is found that the dynamical energy barriers for diffusion are well approximated by the static, 0 K barriers and that prefactors do not depend sensitively on the species undergoing diffusion. The ab initio barriers are observed to be significantly lower when calculated within the generalized-gradient approximation (GGA) rather than in the local-density approximation (LDA). Our calculations predict that surface diffusion should proceed primarily via the diffusion of vacancies. Adatoms are found to migrate most easily via a jump mechanism. This is the case, also, of dimers, even though the corresponding barrier is slightly larger than it is for adatoms. We observe, further, that dimers diffuse more readily than they can dissociate. Our results are discussed in the context of recent submonolayer growth experiments of Cu(100).
All Related Versions