Caffeine-induced current in embryonic heart cells: time course and voltage dependence

Abstract
Abrupt exposure of 90- to 130-micron diameter chick embryonic myocardial cell aggregates to 10 mM caffeine has been shown to induce a transient inward current. In the present study, we recorded a similar current in small cell clusters (less than 10 cells) in which access of caffeine to each of the cells was rapid. The resulting inward current consisted of a single peak, which decayed exponentially (predominant time constant 335 +/- 130 ms at -40 mV) and had a peak amplitude of up to 15.5 microA/cm2. The caffeine-induced current persisted when the slow inward current was abolished by a 30-s pretreatment with 2 microM D 600 and could be observed at potentials where the fast sodium channels were fully inactivated. The current-voltage relation of the caffeine response was linear between -110 and -40 mV, giving an extrapolated voltage intercept of +12 mV. However, the inward current did not diminish or reverse with further depolarization. A substantial inward current occurred at potentials up to +60 mV, which is more positive than the reversal potential of the tetrodotoxin-sensitive inward current. We conclude that the caffeine-induced current is mediated in part by electrogenic Na+-Ca2+ exchange.

This publication has 0 references indexed in Scilit: