Modified-atmosphere Packaging of Blueberry Fruit: Modeling Respiration and Package Oxygen Partial Pressures as a Function of Temperature
- 1 May 1994
- journal article
- Published by American Society for Horticultural Science in Journal of the American Society for Horticultural Science
- Vol. 119 (3) , 534-539
- https://doi.org/10.21273/jashs.119.3.534
Abstract
A mathematical model was developed to characterize the interaction of fruit O2 uptake, steady-state O2 partial pressures in modified-atmosphere (MA) packages ([O2]pkg), and film permeability to O2 (Po2) from previously published data for highbush blueberry (Vaccinium corymbosum L. `Bluecrop') fruit held between 0 and 25C. O2 uptake in nonlimiting O2 (Ro2max,T) and the [O2]pkg at which O2 uptake was half-maximal (K½T) were both exponentially related to temperature. The activation energy of 02 uptake was less at lower [O2]pkg and temperature. The predicted activation energy for permeation of O2 through the film (\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \(\mathrm{E}_{\mathrm{a}}^{\mathrm{P_{\mathrm{o}_{2}}}}\) kJ·mol-1) required to maintain close-to-optimum [O2]pkg across the range of temperatures between 0 and 25C was ≈ 60 kJ·mol-1. Packages in which diffusion was mediated through polypropylene or polyethylene would have values \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \(\mathrm{E}_{\mathrm{a}}^{\mathrm{P_{\mathrm{o}_{2}}}}\) of ≈ 50 and 40 kJ·mol-1, respectively, and would have correspondingly greater tendencies for [O2]pkg to decrease to excessively low levels with an increase in temperature. Packages that depend on pores for permeation would have an \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \(\mathrm{E}_{\mathrm{a}}^{\mathrm{P_{\mathrm{o}_{2}}}}\) of <5 kJ·mol-1. Our procedure predicted that, if allowed to attain steady-state conditions, packages with pores and optimized to 2 kPa O2 at 0C would become anaerobic with as little as a 5C increase in temperature. The results are discussed in relation to the risk of temperature abuse during handling and marketing of MA packaged fruit and strategies to avoid induction of anaerobiosis.
Keywords
This publication has 0 references indexed in Scilit: