The roles of convergence and apparent distance in depth constancy with motion parallax

Abstract
The question of whether motion parallax is calibrated by convergence or by apparent distance for depth perception was addressed in three experiments. In Experiment 1, a random dot parallactic display was viewed monocularly at a distance of 80 cm, and the convergence angles were set for distances of 40, 60, and 80 cm. Averaged apparent depth was not different across condi-tions. In Experiment 2, a display consisting of one surface showing dollar bills and one surface showing random dots was viewed monocularly at a distance of 80 cm. It was presented at two different apparent distances, which were manipulated by varying the size of the dollar bills. In one condition, normally sized dollar bills were presented, and in another condition, the size was reduced by 30%, The averaged apparent depth associated with the small-bill display was larger than the depth associated with the normally sized bill display. In Experiment 3, a random dot display was viewed monocularly at 120 cm. In the primary condition, the random dot display was viewed with an induction screen at 80 cm, and it was moved from side to side such that it appeared stationary and close to the plane of the induction screen. In a comparison condition, the display was viewed without the induction screen and was moving from side to side at 120 cm. In another comparison condition, the display was again viewed without the induction screen but was stationary at 120 cm. Observers adjusted the extent of motion parallax so that apparent depth was 1 cm. The mean extent of parallax was larger in the primary condition. The results show that the visual system calibrates motion parallax with apparent distance, but not directly with an oculomotor adjustment of convergence.

This publication has 22 references indexed in Scilit: