The measured elastic and strength properties of angle-ply composites of short fibers and rubber depend on test-piece geometry. In general, higher tensile moduli and strengths are obtained when plies are both thin and wide. Once the effects of test-piece geometry are taken into account, elastic properties can be calculated as functions of the properties of a single ply. Classical compliance transformation equations can be used. However, because of the invariance of shear modulus in aligned composites, the tensor transformation equations are somewhat simplified. Tensile strengths of off-axis unidirectional composite plates and balanced-angle plies can be fitted by Hill's criterion. Unidirectional composites tend to fail in the weakest mode, depending on the angle of stress, but laminating causes all principal stresses in a ply to be near their ultimate limit at the time of failure.