Abstract
This paper describes a closed-circuit apparatus for the measurement of local heat transfer coefficients from the inner surface and overall friction coefficients for air flowing through an annulus (radius ratio 1.7). Results were obtained for Reynolds numbers from 35 000 to 170 000 for temperature ratios Ti/Tb up to 1.74. A novel type of heater bar was used in order to avoid some of the disadvantages of the more usual designs. The results were very consistent. It was found that the effect of heat flux on the heat transfer coefficient could be eliminated either by the film temperature method using a film temperature coefficient of 0.25 or by including a temperature ratio term ( TiTb)-0.2 in the Nu-Re relationship. Over most of the Reynolds number range the overall friction coefficient did not vary with heat flux.

This publication has 1 reference indexed in Scilit: