Gain of regularity for equations of KdV type
- 1 April 1992
- journal article
- Published by European Mathematical Society - EMS - Publishing House GmbH in Annales de l'Institut Henri Poincaré C, Analyse non linéaire
- Vol. 9 (2) , 147-186
- https://doi.org/10.1016/s0294-1449(16)30243-8
Abstract
This article discusses questions of the smoothness of solutions to nonlinear dispersive evolution equations. We consider equations of KdV type, that is, of the general form ∂_{t}u + f\left(∂_{x}^{3}u,∂_{x}^{2}u,∂_{x}u,u;\:x,t\right) = 0 with x\in \mathbf R . The hypothesis on the nonlinear function f is principally that ∂_{∂_{x}^{3}u}f≧\mathrm{C}≧0 , so that dispersive effects are dominant. We show that if the function u(0, x) decays faster than polynomially on \mathbf R^+ , and possesses certain minimal regularity, then a priori the solution u(t, x) \in C^∞ for t > 0 . Furthermore, the relationship between the rate of decay and the amount of gain of regularity is quantified; if \int _{−\mathrm{∞}}^{\mathrm{∞}}u^{2}\left(0,x\right)\:\left(1 + \left|x_{ + }\right|^{k}\right)\:dx < \mathrm{∞} then u\left(t,\:.\right) \in \mathrm{H}_{\mathrm{loc}}^{k}\left(\mathbf{R}\right) for all 0 < t ≦T , and u\left(t,x\right) \in \mathrm{L}^{1}\left(\left[0,\mathrm{T}\right];\mathrm{H}_{\mathrm{loc}}^{k + 1}\left(\mathbf{R}\right)\right) where T is the existence time. Résumé: Cet article démontre certaines propriétés de régularité des solutions des équations d’évolution dispersives non linéaires. Nous considérons les équations du type KdV, de la forme ∂_{t}u + f\left(∂_{x}^{3}u,∂_{x}^{2}u,∂_{x}u,u;\:x,t\right) = 0 où x\in \mathbf R . L’hypothèse la plus importante sur la fonction f est que ∂_{∂_{x}^{3}u}f≧\mathrm{C} > 0 , pour que les effets dispersifs soient dominants. Nous montrons que, si la fonction u(0, x) décroît vers zéro plus vite que les polynomes sur \mathbf R^+ , et si elle est de minimale régularité, a priori la solution u(t, x) \in C^∞ pour t > 0 . En plus, la relation entre la vitesse de décroissance et l’ordre de régularité supplémentaire est quantifiée; si \int _{−\mathrm{∞}}^{\mathrm{∞}}u^{2}\left(0,x\right)\left(1 + \left|x_{ + }\right|^{k}\right)dx < \mathrm{∞} alors u\left(t,\:.\right) \in \mathrm{H}_{\mathrm{loc}}^{k}\left(\mathbf{R}\right) pour tout 0<t≦T , et u\left(t,x\right) \in \mathrm{L}^{1}\left(\left[0,\mathrm{T}\right];\mathrm{H}_{\mathrm{loc}}^{k + 1}\left(\mathbf{R}\right)\right) où T est le temps d’existence.Keywords
Funding Information
- Alfred P. Sloan Foundation
This publication has 7 references indexed in Scilit:
- Linear dispersive equations of Airy typePublished by Elsevier ,2004
- Smoothing effect for some Schrödinger equationsJournal of Functional Analysis, 1989
- Regularity of solutions to nonlinear dispersive equationsJournal of Differential Equations, 1989
- Regularity of solutions to the Schrödinger equationDuke Mathematical Journal, 1987
- On solutions of the initial value problem for the nonlinear Schrödinger equationsJournal of Functional Analysis, 1987
- On solutions of the initial value problem for the nonlinear Schr dinger equations in one space dimensionMathematische Zeitschrift, 1986
- GENERALIZED SOLUTIONS OF THE CAUCHY PROBLEM FOR THE KORTEWEG-DE VRIES EQUATIONMathematics of the USSR-Sbornik, 1984