Abstract
Low calcium increases the excitability of neurones and can induce autorhythmicity in excitable cells. Numerical solutions of the Hodgkin-Huxley membrane equations, and numerical evaluations of the small-signal impedance and admittance are used to illustrate the increase in resonance produced by low [Ca2+]0. The resonant frequency may be located either by the peak of the amplitude of the impedance, or by the frequency at which the phase angle is zero for 1:1 entrained action potentials. Autorhythmicity is produced by any mechanism which increases the resonant peak of the amplitude of the membrane impedance.