The distribution of nearby stars in phase space mapped by Hipparcos III. Clustering and streaming among A-F type stars
Abstract
This paper presents the detailed results obtained in the search of density- velocity inhomogeneities in a volume limited and absolute magnitude limited sample of A-F type dwarfs within 125 parsecs of the Sun. A 3-D wavelet analysis is used to extract inhomogeneities, both in the density and velocity distributions. Having established real picture of the phase space this without assumption we come back to previously known observational facts regarding clusters and associations, superclusters. In the 3-D position space, well known open clusters (Hyades, Coma Berenices and Ursa Major), associations (parts of the Scorpio-Centaurus association) as well as the Hyades evaporation track are retrieved. Three new probably loose clusters are identified (Bootes, Pegasus 1 and 2). The sample is relatively well mixed in the position space since less than 7 per cent of the stars belong to structures with coherent kinematics, most likely gravitationally bound. In the velocity space, the majority of large scale velocity structures ($\sigma$ ~ 6.3 $km s-1$) are Eggen's superclusters (Pleiades SCl, Hyades SCl and Sirius SCl) with the whole Centaurus association. A new supercluster-like structure is found with a mean velocity between the Sun and Sirius SCl velocities. These structures are all characterized by a large age range which reflects the overall sample age distribution. Moreover, a few old streams of ~ 2 Gyr are also extracted at this scale with high U components. We show that all these large velocity dispersion structures represent 46% of the sample. Smaller scales (\sigma ~ 3.8 and 2.4 $km s-1$) reveal that superclusters are always substructured by 2 or more streams which generally exhibit a coherent age distribution. Percentages of stars in these streams are 38% and 18% respectively.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: