Abstract
Summary: Many drug interactions can be demonstrated, but only a few are so clinically significant that they necessitate adjusting drug dosages. The same drug combination may produce changes of variable extent or direction in different individuals. The reasons for this variability include genetic control of the rate and inducibility of drug metabolism, and environmental factors such as contact with chemicals. Among antimicrobial agents, chloramphenicol may cause accumulation of phenytoin (PHT) and phenobarbital (PB), and isoniazid may cause PHT, carbamazepine (CBZ), and primidone (PRM) to accumulate. Erythromycin may cause accumulation of CBZ. Among antiulcer agents, antacids may reduce PHT concentration while cimetidine may cause accumulation of PHT, CBZ, and diazepam (DZP). Salicylates displace strongly binding drugs such as PHT, DZP, or valproate (VPA) from the binding sites in plasma proteins, which may lead to some decline of the total plasma level with an increase in the unbound drug percentage. Conversely, anticonvulsants may influence the dosage requirements of oral anticoagulants by inducing their metabolism. Failures of oral contraceptives have been attributed to anticonvulsants in some patients. Probably the most predictable interaction that necessitates dosage adjustment is accumulation of PB caused by VPA. Intentional inhibition of PRM metabolism by nicotinamide serves as an example of attempts to utilize an interaction for improved therapeutic effect.