Interaction Of Electrons With Spin Waves In The Bulk And In Multilayers
Preprint
- 14 March 2002
Abstract
The exchange interaction between electrons and magnetic spins is considerably enhanced near interfaces, in magnetic multilayers. As a result, a dc current can be used to generate spin oscillations. We review theory and experimental evidence. The s-d exchange interaction causes a rapid precession of itinerant conduction-electron spins s around the localized spins S of magnetic electrons. Because of the precession, the time-averaged interaction torque between s and S vanishes. An interface between a magnetic layer and a spacer causes a local coherence between the precession phases of differnt electrons, within 10 nm from the interface, and restores the torque. Also, a second magnetic layer with pinned S is used to prepare s in a specific direction. the current-induced drive torque of s on S in the active layer may be calculated from the spin current (Slonczewski) or from the spin imbalance Delta-mu (Berger). Spin current and Delta-mu are proportional to each other, and can arise from Fermi-surface translation, as well as from expansion/contraction.Keywords
All Related Versions
- Version 1, 2002-03-14, ArXiv
- Published version: Journal of Applied Physics, 91 (10), 6795.
This publication has 0 references indexed in Scilit: